第165章 NPC,真不是很难![1/2]

桔子泛泛提示您:看后求收藏(玉露文学y6go.com),接着再看更方便。

所谓“P=NP?”问题,“?”才是关键。

因为不知道等不等于,需要证明的就是等不等于。

简单点的说,计算机解不同的题目,就是将之拆分成加加减减这样最基础的运算。

所以一道题究竟有多难……嗯,主要是对计算机多难,就取决于可以拆分成多少步,或者说花多少时间——计算机基础运算的时间基本一样,所以忽略空间方面的因素,二者大致等价。

这叫时间复杂度,用大O也叫渐进符号表示。

O(1)就是常数级复杂度——最常规的计算,数据规模增加多少,运算花费时间也随之增加多少。

O(logn)就要复杂一点了。

然后还有O(n),O(nlogn),O(n^),O(n!),O(n^n)……

一级一级,难度逐层上升,解题所用时间花式暴涨。

其中O(n^c)之下,是多项式时间内能解决的,就叫做P类问题。

在此之上的,虽然会随着n的增长,出现指数级甚至更过分的暴涨,却有一个共同点,就是正向解很难,给你一个答案去验证,一般就不难了。

比如大数的质因数分解。

想知道一个大数是不是素数很难,需要从2开始,一直除到根下n。

但告诉你它能被某个数整除,你去验证,则就几步的事。

这类可以在多项式时间里验证的问题,就叫做NP问题。

显然所有P类问题,都是NP问题,因为是简单可验证的。

但NP类问题,是否都是P类问题?是否存在某些特殊的算法,能将这些问题的难度降低到多项式时间可以解决,就仿佛给答案去验证的程度上去呢?

这就是“P=NP?”了。

更多内容加载中...请稍候...

本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!

本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!